MATH 2050 - Continuity of functions

(Reference: Bartle \$5.1,5.2)

Def": (E-& def" for continuity) Given f: A -> iR and CEA. we say that f is continuous at C "if $\forall E > 0$, $\exists S = S(E) > 0$ st. (*) ····· | f(x) - f(c) | < ≥ whenever x ∈ A, |x - c | < § Remark: Compared to the def? of limf(x) = L, we have • L is replaced by f(c) => CEA • f(c) matters here, unlike limf(x) = L • (*) is always ratisfied at X=C · C may or may not be a cluster point of A Note: Continuity of f at CEA is sensitive to the value of f(c).

For the last remark,

Then, f is always at $c \in A$ why? In this case, $\exists \delta > 0$ st. $A \cap (c-\delta, c+\delta) = \{c\}$ \Rightarrow (x) is trivelly satisfied.

Note: "continuity" is a pointuise condition.

<u>Def</u>ⁿ: $f: A \rightarrow \mathbb{R}$ is continuous on a subset $B \subseteq A$ if f is continuous at EVERY $C \in B$.

In particular, if B=A, then we say f is continuous (everywhere).

Example of dis-continuous functions

Example 1: Consider f:
$$R = A \rightarrow R$$
 defined by
 $f(x) := \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$ "sign function"
 $f(x) := \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \end{cases}$
Show that f is NOT cts at $X = 0$.
Proof: Note 0 & A is a cluster pt of $A = R$.
Check whether $\lim_{x \to 0} f(x) = \frac{2}{5} f(e)$
In this case $\lim_{x \to 0} f(x) = \frac{2}{5} f(e)$
Check whether $\lim_{x \to 0} f(x) = \frac{2}{5} \int_{e}^{e} f(e)$
In this case $\lim_{x \to 0} f(x) = \frac{2}{5} \int_{e}^{e} f(e)$
Sonsider $(x_0) = \frac{(-1)^n}{n} \rightarrow 0$ and
 $note = \frac{2}{5} \lim_{x \to 0} f(x) = \frac{2}{5} \int_{e}^{e} \int_{e}^{e}$

Example 2: The function $f: A = R \rightarrow R$ defined by $f(x) := \begin{cases} 1 & \text{if } x \in \mathbb{Q} \\ 0 & \text{if } x \notin \mathbb{Q} \end{cases}$ is discontinuous EVERYWHERE. (#) Proof: Key idea: Density of Q or Q^c in R. Take CER. There are 2 cases: C4x 1: C E Q. Ø Claim: limf(x) DOES NOT EXIST. Reason: \exists rational numbers $(x_n) \rightarrow c \Rightarrow (f(x_n)) = (1) \rightarrow 1$ \exists irrational numbers $(x_n') \rightarrow c \Rightarrow (f(x_n')) = (0) \rightarrow 0$ density DONE by Seq. conterna ! (#) Case 2: $C \notin Q$ is the same. Q: How to construct NEW cts for from OLD ones? A: "most of the time" use limit theorems. Thm 1 : f.g: A - R is cts (at CEA) ⇒ f±g,fg, fg, is cts (at CEA) wherever they are detired

Let $\varepsilon > 0$ be fixed but arbitrang. Since g is cts at b = f(c), then $\exists S_1 = S_1(\varepsilon) > 0$ st. (t) $|g(y) - g(b)| < \varepsilon$ when $y \in B$, $|y - b| < S_1$. Since f is cts at $c \in A$, for the $(S_1 > 0, \exists S_2 = S_2(S_1) > 0$ s.t. (tt) $|f(x) - f(c)| < S_1$ when $x \in A$. $|x - c| < S_2$ For such $S_2 > 0$, when $X \in A$, $|X - c| < S_2$ by (tt). $|f(x) - f(c)| < S_1$ $y = b_1 = b_2$ by (t). |g(f(x)) - g(f(c))| < Eg = f(x) g = f(c)

۵

Exercise: Prove this using sequential criteria.