MATH 2050 - Continuity of functions
(Reference: Bartle $\$ 5.1,5.2$)

Q: What does "continuity" mean?
$f: A \rightarrow \mathbb{R}$

A: " f is continuons at c "
$\Leftrightarrow " f(x) \approx f(c)$ when $x \approx c "$
Note: We NEED $C \in A$.

Defn: ($\varepsilon-\delta$ defn for continuity)
Given $f: A \rightarrow \mathbb{R}$ and $c \in A$. we say that " f is continuous at $c^{\prime \prime}$ if $\forall \varepsilon>0, \exists \delta=\delta(\varepsilon)>0$ s.t.
(*) ….. $|f(x)-f(c)|<\varepsilon$ whenever $x \in A,|x-c|<\delta$
Remark: Compared to the def! of $\lim _{x \rightarrow c} f(x)=L$, we have

- L is replaced by $f(c) \Rightarrow c \in A$
- $f(c)$ matters heve, unlike $\lim _{x \rightarrow c} f(x)=L$
- (*) is always satisfred at $x=c$
- C may or may not be a cluster point of A

Note: Continurty of f at $c \in A$ is sensitive to the value of $f(c)$.

For the last remark,
Case 1: when C IS a cluster pt. of A " f is cts at $c \in A " \Leftrightarrow " \lim _{x \rightarrow c} f(x)=f(c) "$ interesting case

Pie you can "substitute" to evaluate the limit at C

Case 2: when C is NOT a cluster pt. of A Then. f is always cts at $c \in A$

why? In this case. $\exists \delta>0$ sit.

$$
A \cap(c-\delta, c+\delta)=\{c\}
$$

\Rightarrow (k) is triverlly satisfied.

Note: "continuity" is a pointrise condition.
Def: $f: A \rightarrow \mathbb{R}$ is continuous on a subset $B \subseteq A$ if f is continuous at EVERY $c \in B$.

In particular, if $B=A$, then we say f is continuous (everywhere).

Examples of continuous functions

- $f(x)=b$ constant function
- $f(x)=\sin x$ or $\cos x$ or $\tan x$
- $f(x)=x$ or $f(x)=x^{2}$
- $f(x)=e^{x}$ or \sqrt{x}
- $f(x)=p(x)$ polynomial function

Example of dis-continuous functions

Example 1: Consider $f: \mathbb{R}=A \rightarrow \mathbb{R}$ defined by

$$
f(x):=\left\{\begin{array}{cl}
1 & \text { if } x>0 \\
0 & \text { if } x=0 \\
-1 & \text { if } x<0
\end{array} \quad\right. \text { "sign function" }
$$

Show that f is NOT cts at $x=0$.
Proof: Note $0 \in A$ is a duster pt. of $A=\mathbb{R}$.
Check whether $\lim _{x \rightarrow 0} f(x) \cong f(c)$
In this case $\lim _{x \rightarrow 0} f(x)$ DOES NOT EXIST!

$\left.\begin{array}{rl}\text { Consider } & \left(x_{n}\right)=\left(\frac{(-1)^{n}}{n}\right) \rightarrow 0 \text { and } \\ \text { note } \\ \left(f\left(x_{n}\right)\right)=\left((-1)^{n}\right) \text { is divergent }\end{array}\right\} \underset{\text { artemis }}{\text { aeq }} \lim _{x \rightarrow 0} f(x) \begin{aligned} & \text { does } \\ & \begin{array}{l}\text { not } \\ \text { exist. }\end{array}\end{aligned}$
\qquad -
Remark: For this f, it is discontinuous at 0 no matter what the value of $f(0)$ is.
Example: [Sometimes you can make a $f \mathrm{cn}$ cts by redefining it at apt.]

$$
f(x):=\left\{\begin{array}{lll}
x & \text { if } x \neq 0 & \underset{\text { differs }}{\longleftrightarrow} \\
0 & \text { if } x=0 & \text { only } \\
\text { at } x=0
\end{array} \quad g(x):= \begin{cases}x & \text { if } x \neq 0 \\
1 & \text { if } x=0\end{cases}\right.
$$

This is ats at 0 . This is Not cts at 0 .

Example 2: The function $f: A=\mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}1 & \text { if } \\ 0 & x \in \mathbb{Q} \\ 0 & \text { if }\end{cases}
$$

is discontinuous EVERYwHERE.
(\#)
Proof: Key idea: Density of Q or \mathbb{Q}^{c} in \mathbb{R}.
Take $\subset \in \mathbb{R}$. There are 2 cases:
Case 1: $\subset \in \mathbb{Q}$.

Claim: $\lim _{x \rightarrow C} f(x)$ DOES NOT ExIST.
Reason: $\left\{\exists\right.$ rational numbers $\left(x_{n}^{*}\right) \rightarrow c \Rightarrow\left(f\left(x_{n}\right)\right)=(1) \rightarrow 1$
解 $\left\{\begin{array}{l}\exists \text { irrational numbers }\left(\dot{x}_{n}^{c}\right) \rightarrow c \Rightarrow\left(f\left(x_{n}^{\prime}\right)\right)=(0) \rightarrow 0\end{array}\right.$
density
(\#)
DONE by seq. criteria!
Case 2: $\subset \mathbb{Q} \mathbb{Q}$ is the same.

Q: How to constmat NEW cts fin from OLD ones?
A: "most of the time" use limit theorems.

Thu 1: $f . g: A \rightarrow \mathbb{R}$ is cts (at $c \in A$)
$\Rightarrow f \pm g . f g . f / g$ is cts (at $c \in A)$ wherever they ave defined
cts exymue it is defined, ie $x \neq 0$

Thm 2: $f: A \rightarrow \mathbb{R}$ is cts (at $c \in A)$
$\Rightarrow \sqrt{f}$. If \mid are cts (at $G \in A$) whermen they are defined.

Thm 3: (Composition of functions)
If f is cts at $c \in A$, and g is cts at $f(c) \in B$. then $g \circ f$ is cts at $c \in A$.
$f: A \rightarrow \mathbb{R}$
I: $B \rightarrow \mathbb{R}$
and $f(A) \subseteq B$

$$
\Rightarrow S \bullet f: A \rightarrow \mathbb{R}
$$

$$
g \cdot f(x):=g(f(x))
$$

Proof: "Use $\varepsilon-\delta$ defn". Let $b:=f(c) \in B$
Let $\varepsilon>0$ be fixed but arbitrang.
Since g is cts at $b=f(c)$. then $\exists \delta_{1}=\delta_{1}(\varepsilon)>0$ s.t.
(t) ….. $\quad|g(y)-g(b)|<\varepsilon$ when $y \in B,|y-b|<\delta_{1}$

Since f is cts at $c \in A$, for the $\left(\delta_{1}>0, \exists \delta_{2}=\delta_{2}\left(\delta_{1}\right)>0\right.$ s.t. $(t+) \cdots . .|f(x)-f(c)|<\delta_{1}$ when $x \in A,|x-c|<\delta_{2}$

For such $\delta_{2}>0$, when $x \in A,|x-c|<\delta_{2}$

$$
\begin{aligned}
& \text { by }(t t) \cdot \quad|\underbrace{f(x)}_{y}-\underbrace{f(c)}_{b:=}|<\delta_{1} \\
& \text { by }(t) \cdot \quad|\underbrace{g(f(x))}_{g \circ f(x)}-\underbrace{g(c)}_{\text {of }} g(f(c))|<\varepsilon
\end{aligned}
$$

-

Picture:

Exercise: Prove this using sequential cirteria.

